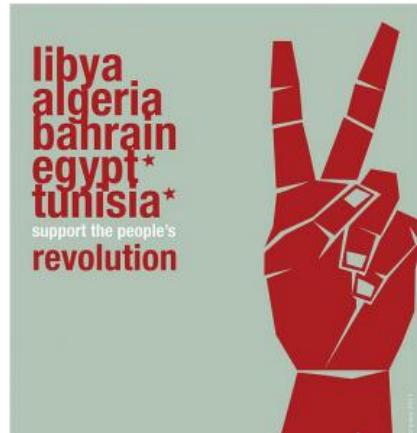


Influence Spread in Large-Scale Social Networks – A Belief Propagation Approach

Huy Nguyen and Rong Zheng

Department of Computer Science
University of Houston, TX, USA

The social media network



Agenda

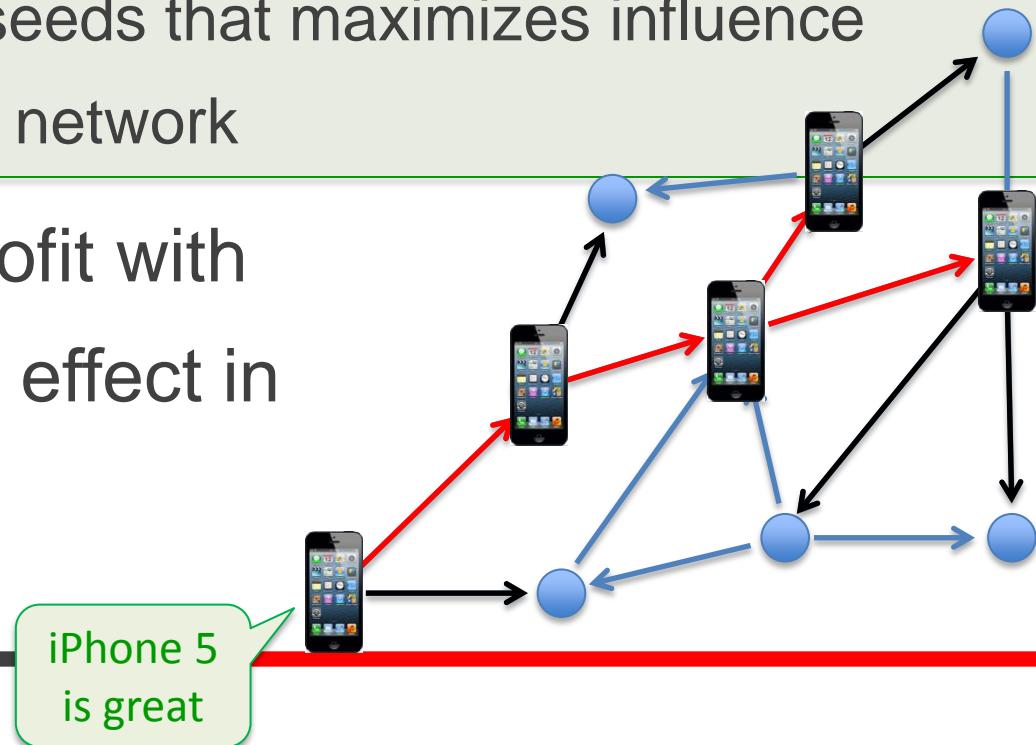
- Influence Maximization in social networks
- Spread computation on DAGs
- Seed selection algorithm
- Evaluation
- Conclusion and Future Work

Influence maximization (IM) problem

- Users influence each other in a social network
 - Spreading opinion, idea, information, action ...

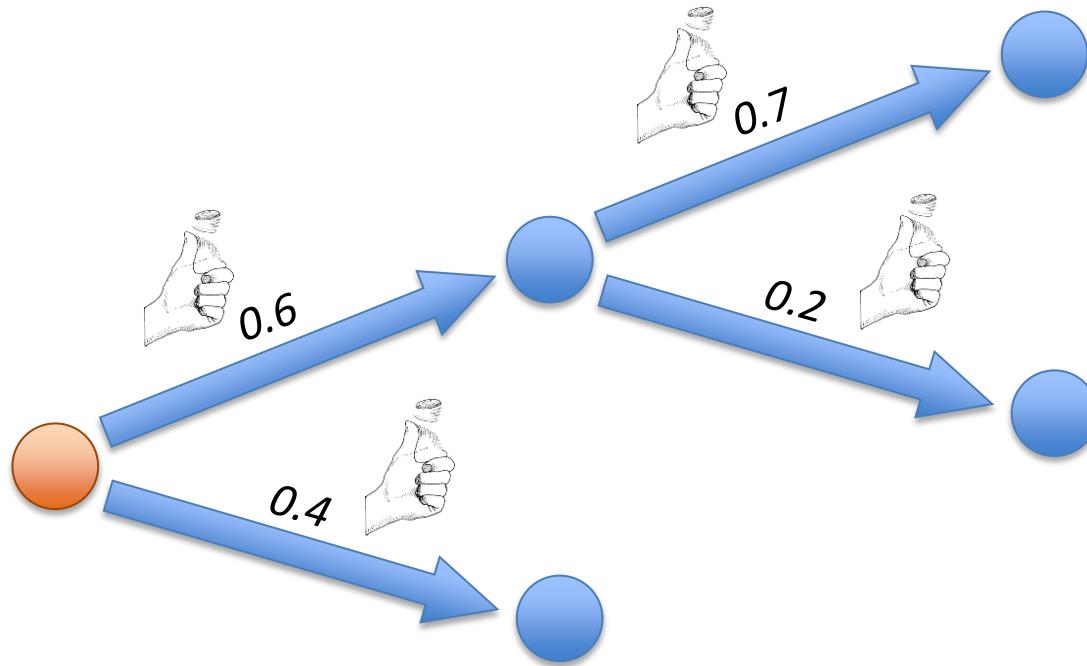
- Influence maximization problem (#P-Hard)
 - Find a set of k seeds that maximizes influence spread over the network

- Maximize the profit with
“word-of-mouth” effect in
Viral Marketing



Independent cascade model

- Spread probability associated with each edge



- Influence spread = expected number of influenced nodes

Traditional solution

Greedy seed selection scheme [Kempe et al. 2003]

1. Seed set $S = \emptyset$
2. Calculate incremental spread of $v, \forall v \in V$
3. Select $u = \text{node with max incremental spread}$
4. $S = S \cup u$
5. Return to step 2 until $|S| = k$

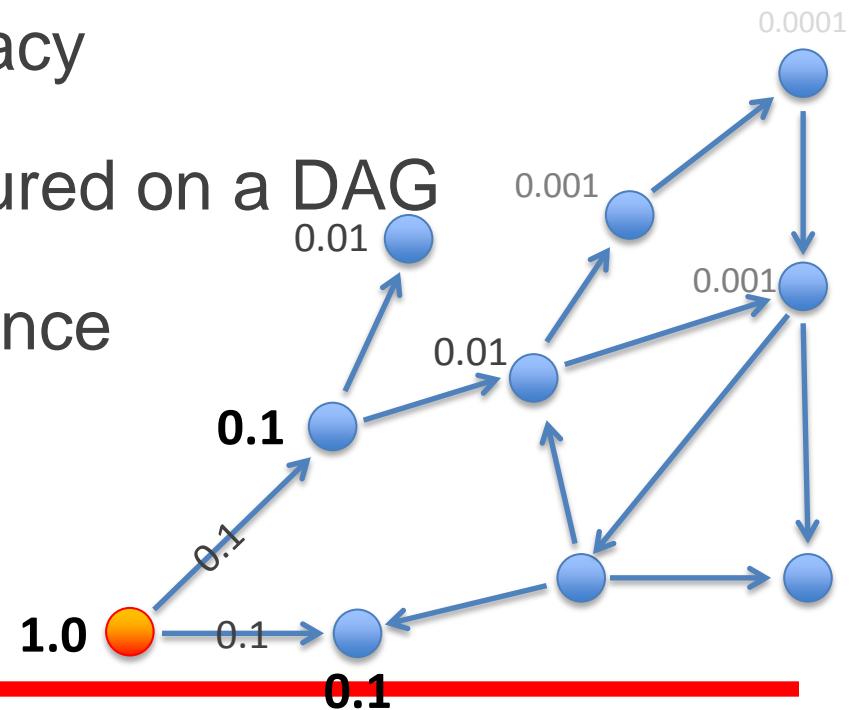
- As good as $\sim 63\%$ of the optimal solution
- Problem
 - Influence spread computation
 - Too many evaluations after each iteration

Our contributions

- Solutions to both aforementioned problems
- Too many evaluations after each iteration
 - Localizing the influence region from a node – modeled by directed acyclic graphs (DAGs)
 - Minimizing the number of nodes to be evaluated
- Influence spread computation
 - Spread computation using belief propagation algorithm on Bayesian Network

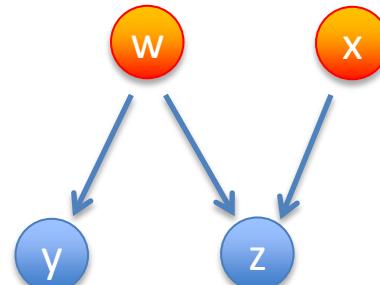
Localizing spread region

- Influence spread decays quickly with distance from the source
- Localizing spread region make computation much faster while retaining accuracy
- Most influence can be captured on a **DAG**
- DAG structure makes influence computation much easier



Belief propagation

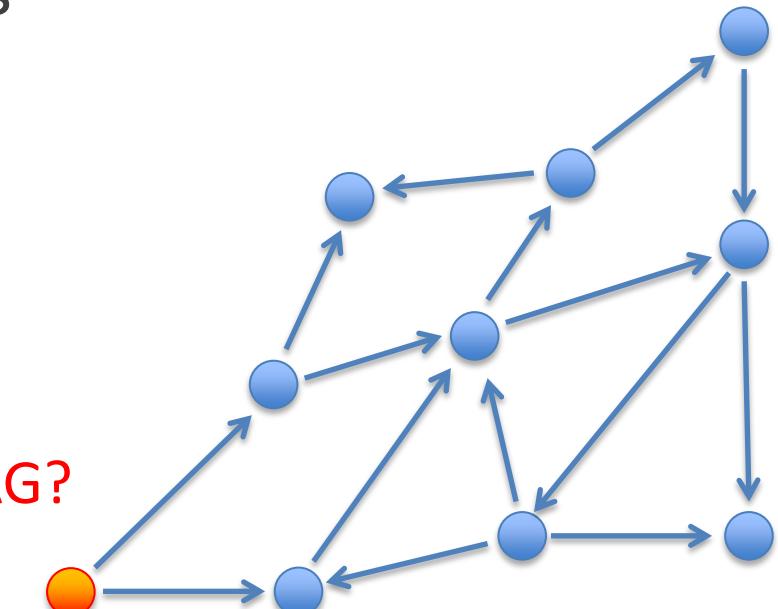
- Technique invented by Pearl in 1982 to calculate marginals / most likely states in Bayes nets.
- Given
 - Bayes net
$$P(w, x, y, z) = P(w)P(x)P(y|w)P(z|w, x)$$
 - Observed variables: w, x
 - Hidden variables: y, z
- Find: $P(y), P(z)$
- Neighbors passing “messages”: I (w) think that you (z) belong in states ... with likelihood ...
- Messages passed from observed to hidden variables
 - Marginal probabilities (**beliefs**) could be estimated



Spread computation on DAGs

- Exact computation of influence spread is hard ($\#P$ -complete even on DAGs)
- Belief propagation algorithms calculate marginal distribution from a set of seeds
- Two BP algorithms used
 - Loopy: **slow** – **more accurate**
 - Single-pass: **fast** – **less accurate**

Wait, how do we convert a graph to a DAG?

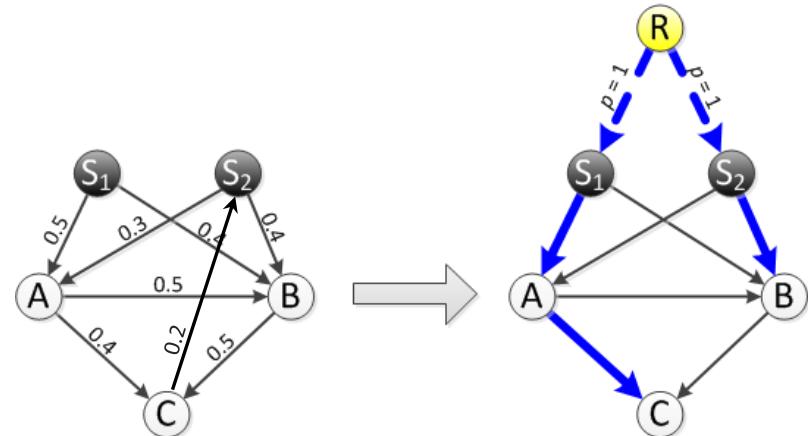


Expectedly, how many people can I persuade?

DAG 1

- Any DAG has at least one topological order
- Order can be obtained from node's “distance” from a seed (a.k.a. node rank)

1. Introduce a super root R connected to all seeds with $p = 1$
2. Calculate a Dijkstra tree T from R
3. Calculate rank of all nodes on T
4. Augment T with edges from a lower to a higher ranked node

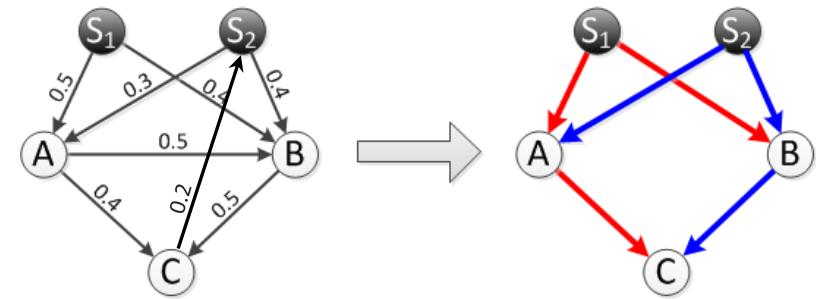


Node	S ₁	S ₂	A	B	C
r(Node)	0	0	0.301	0.398	0.699

DAG 2

- Build Dijkstra trees from seed nodes
- DAG 2 = union of all Dijkstra trees
- Comparing to DAG 1:

- DAG 2 is built faster
- Same set of nodes
- Subset of edges



- Spread computation problem is converted to an instance of BP on a Bayesian network

Seed selection algorithm

Greedy seed selection scheme [Kempe et al. 2003]

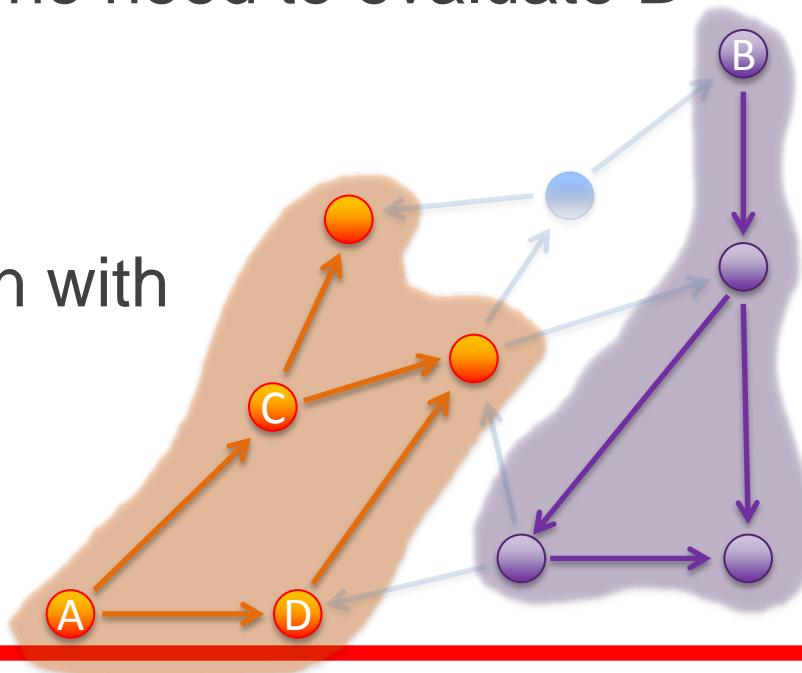
1. Seed set $S = \emptyset$
2. Calculate incremental spread of $v, \forall v \in V$
3. Select $u = \text{node with max incremental spread}$
4. $S = S \cup u$
5. Return to step 2 until $|S| = k$

Estimated with BP algorithm on DAGs

Candidate set is reduced with Lazy Forward mechanism [Leskovec et al. 2007]. However, it can be further improved.

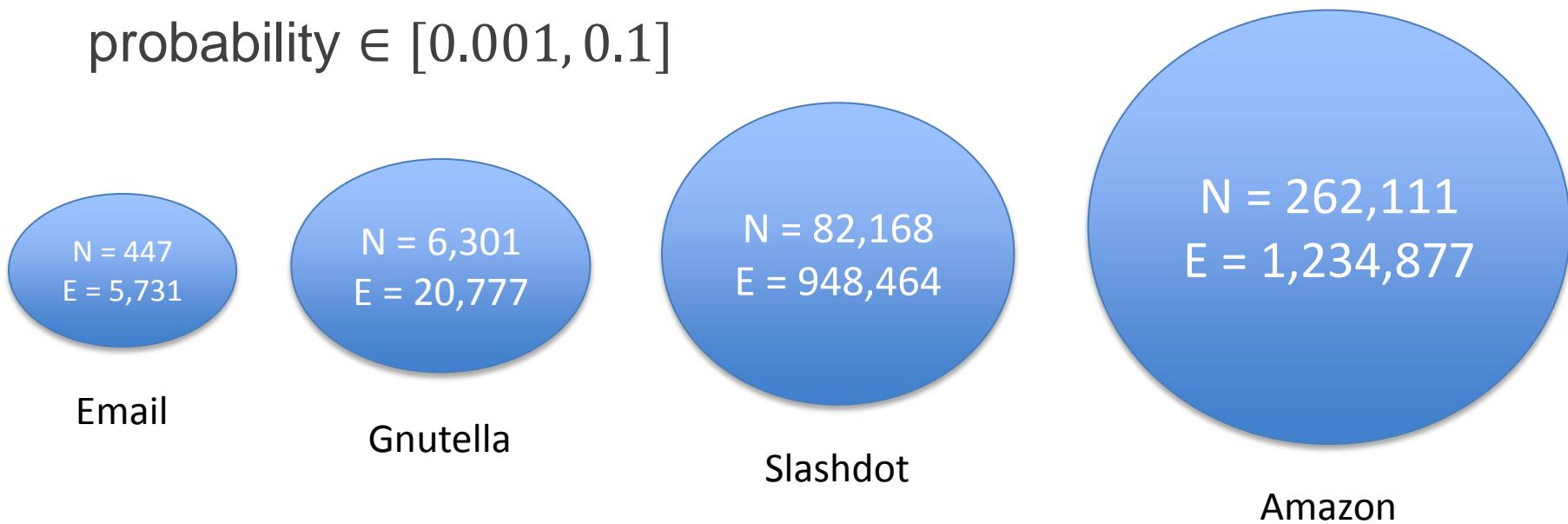
Seed selection algorithm (2)

- Only need to evaluate nodes that have **overlapping influence regions** with the new seed
- A is selected as a seed → no need to evaluate B again
- Can be used in conjunction with Lazy Forward mechanism

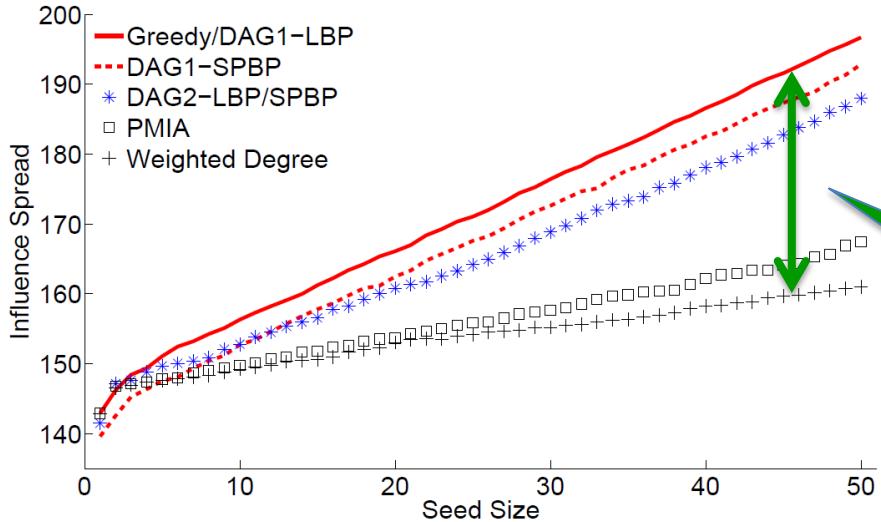


Evaluation overview

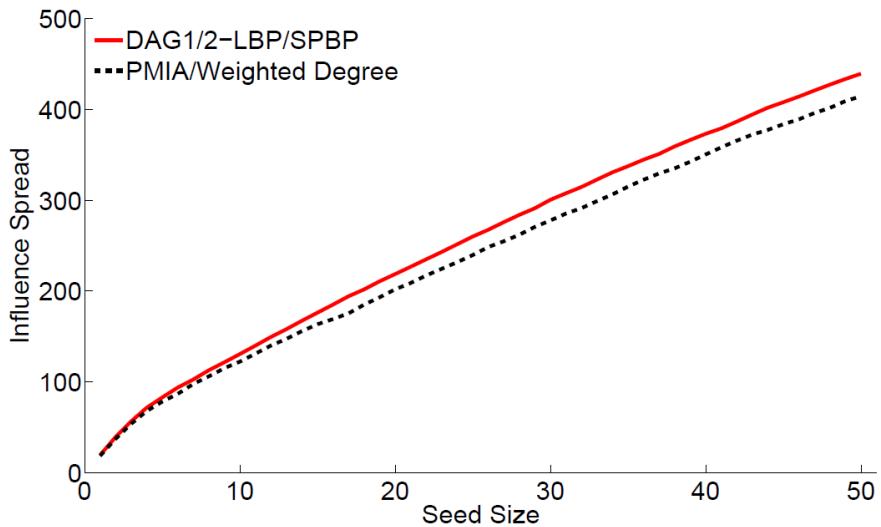
- Our approach vs. state-of-the-art solutions: **PMIA** [Chen et al. 2009], **CELF** [Leskovec et al. 2007], and **Weighted Degree**
- Network edge is assigned random propagation probability $\in [0.001, 0.1]$



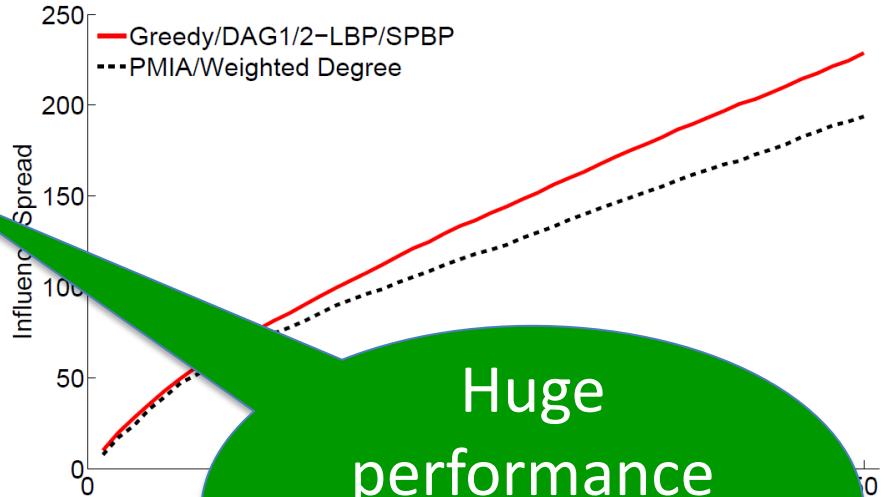
Influence spread result



(a) *Email*

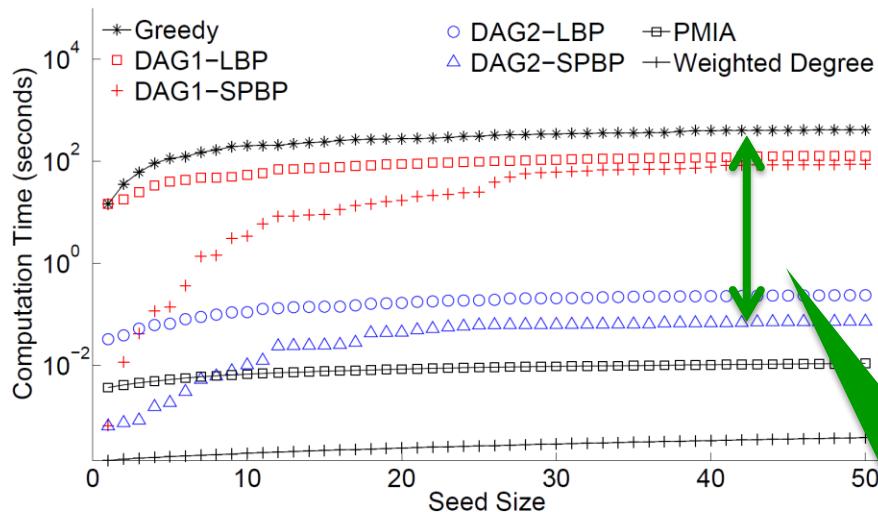


(b) *soc-Slashdot*

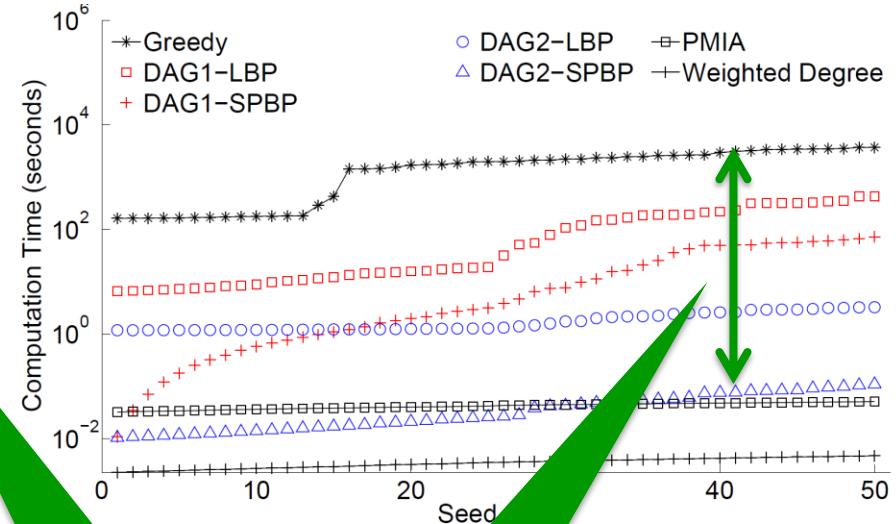


(c) *Amazon*

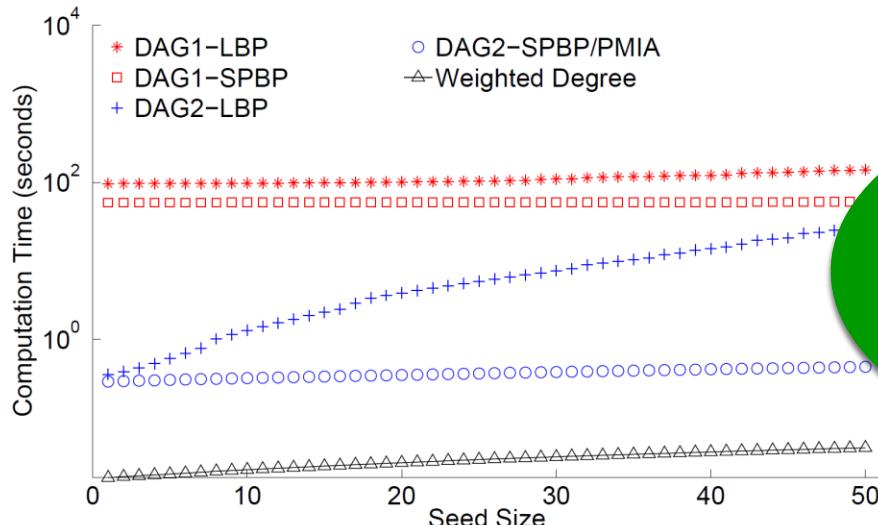
Running time result



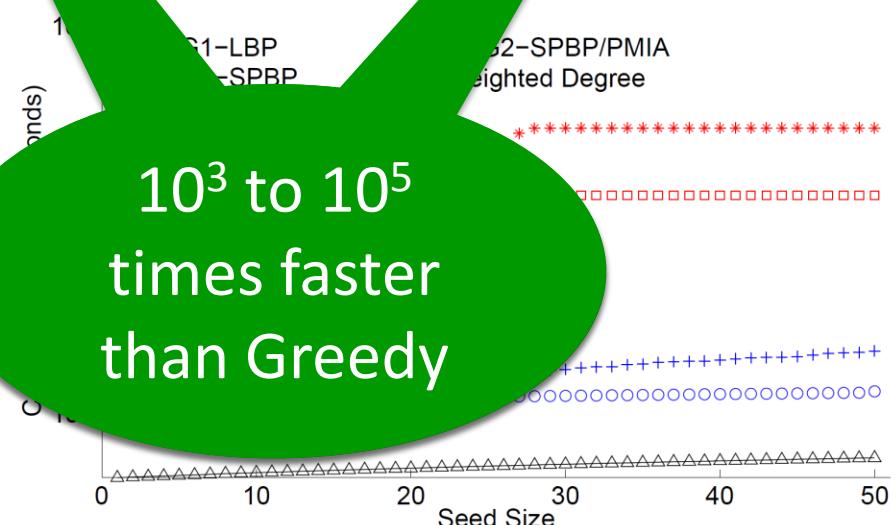
(a) *Email*



(b) *p2p-Gnutella*



(b) *soc-Slashdot*



10³ to 10⁵
times faster
than Greedy

Conclusion and future work

- New framework to solve IM problem in social networks with BP algorithms
- Application flexibility

	DAG 1	DAG 2
Loopy	Best performance - slow	Better than DAG2-SPBP
Single-pass	Very close to DAG1-Loopy	Acceptable performance - fastest

- Future study
 - Impact of graph structure on IM algorithm selection
 - IM problem with incomplete network data

Thank you for your attention

nahuy@cs.uh.edu

<http://www2.cs.uh.edu/~nahuy/>