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Agenda

" Influence Maximization in social networks
" Spread computation on DAGS

" Seed selection algorithm

= Evaluation

® Conclusion and Future Work
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Influence maximization (IM) problem

= Users Influence each other In a social network

* Spreading opinion, idea, information, action ...

" Influence maximization problem (#P-Hard)

* Find a set of k seeds that maximizes influence @

spread over the network

= Maximize the profit with
“‘word-of-mouth” effect in
Viral Marketing
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Independent cascade model

= Spread probability associated with each edge

-

" |nfluence spread = expected number of
Influenced nodes
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Traditional solution

Greedy seed selection scheme [Kempe et al. 2003]

. SeedsetS =0

. Calculate incremental spread of v, Vv € V

. Select u = node with max incremental spread
S=SUu

. Return to step 2 until |[S| = k

As good as ~63% of the optimal solution
= Problem

° Influence spread computation
° Too many evaluations after each iteration
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Our contributions

= Solutions to both aforementioned problems

" Too many evaluations after each iteration

° Localizing the influence region from a node — modeled by
directed acyclic graphs (DAGS)

° Minimizing the number of nodes to be evaluated

" Influence spread computation

° Spread computation using belief propagation algorithm on
Bayesian Network
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Localizing spread region

" |nfluence spread decays quickly with distance from
the source

= | ocalizing spread region make computation much
faster while retaining accuracy ®

" Most influence can be captured on a DAG o-omg/

0.01 @

0.001
= DAG structure makes influence / 001 /‘/’G
computation much easier
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Belief propagation

= Technigue invented by Pearl in 1982 to calculate

marginals / most likely states in Bayes nets.

Given

* Bayes net @ @
Pw,x,y,z) = PWwW)P(x)P(y|w)P(z|w, x) / \ /

° Observed variables: w, x

* Hidden variables: y, z @ @

Find: P(y), P(2)

Neighbors passing “messages”: | (w) think that you (z)

belong in states ... with likelihood ...

Messages passed from observed to hidden variables

* Marginal probabilities (beliefs) could be estimated
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Spread computation on DAGs

= Exact computation of influence spread is hard (#P-
complete even on DAGS)

= Belief propagation algorithms calculate marginal
distribution from a set of seeds ®

= Two BP algorithms used /

° Loopy: slow — more accurate /
° Single-pass: fast — less accurate

Expectedly, how many
people can | persuade?




DAG 1

= Any DAG has at least one topological order

® QOrder can be obtained from node’s “distance” from a
seed (a.k.a. node rank)

1.Introduce a super root R
connected to all seeds withp =1

2.Calculate a Dijkstra tree T from R

3.Calculate rank of all nodeson T

4.Augment T with edges from a Node |81 A B C

lower to a higher ranked node r(Node)[ 0 0 0.301 0.398 0.699
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DAG 2

= Build Dijkstra trees from seed nodes
® DAG 2 = union of all Dijkstra trees

= Comparing to DAG 1.
°* DAG 2 is built faster

* Same set of nodes

* Subset of edges

® Spread computation problem is converted to an
Instance of BP on a Bayesian network
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Seed selection algorithm

Greedy seed selection scheme [Kempe et al. 2003]

1. SeedsetS =0
2 | Calculate incremental spread of v Vv € V
3. Select u = node With max incremental kpread
4. S=SUu
5. Return to step 2 until |S| = k

Estimated with BPvaIgorithm on DAGs

v
Candidate set is reduced with Lazy Forward mechanism
[Leskovec et al. 2007]. However, it can be further improved.
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Seed selection algorithm (2)

= Only need to evaluate nodes that have overlapping

iInfluence regions with the new seed

" Ais selected as a seed =2 no need to evaluate B

: O
agailn l
. o -

" Can be used in conjunction with / N~

. @

Lazy Forward mechanism © /

)

O
—
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Evaluation overview

= Qur approach vs. state-of-the-art solutions: PMIA [Chen

et al. 2009], CELF [Leskovec et al. 2007], and Weighted
Degree

= Network edge is assigned random propagation
probability € [0.001, 0.1]

N=262,111

. N = 82,168
N = 6,301 E=1,234,877

E=20,777 E =948,464
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Influence Spread

Influence Spread

Influence spread result
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Running time result
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Conclusion and future work

= New framework to solve IM problem in social
networks with BP algorithms

= Application flexibility

Best performance - slow Better than DAG2-SPBP
SR ERSY Very close to DAG1-Loopy Acceptable performance - fastest

= Future study
° Impact of graph structure on IM algorithm selection

° IM problem with incomplete network data
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Thank you for your attention

"

nahuy@cs.uh.edu
http://www?2.cs.uh.edu/~nahuy/
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