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Abstract—Primary users (PU) separation concerns with the
issues of distinguishing and characterizing primary users in
cognitive radio (CR) networks. We argue the need for PU
separation in the context of collaborative spectrum sensing and
monitor selection. In this paper, we model the observations of
monitors as boolean OR mixtures of underlying binary latency
sources for PUs, and devise a novel binary inference algorithm
for PU separation. Simulation results show that without prior
knowledge regarding PUs’ activities, the algorithm achieves high
inference accuracy. An interesting implication of the proposed
algorithm is the ability to effectively represent n independent
binary sources via (correlated) binary vectors of logarithmic
length.

I. INTRODUCTION

With the ongoing growth in wireless services, the demand
for the radio spectrum has significantly increased. However,
the spectrum resources are scarce and most of them have
been already licensed to existing operators. Recent studies
have shown that despite claims of spectral scarcity, the actual
licensed spectrum remains unoccupied for long periods of
time [1]. Thus, cognitive radio (CR) systems have been pro-
posed [2], [3], [4] in order to efficiently exploit these spectral
holes. CRs or secondary users (SUs) are wireless devices
that can intelligently monitor and adapt to their environment,
hence, they are able to share the spectrum with the licensed
primary users (PUs), operating whenever the PUs are idle.

One key challenge in CR systems is spectrum sensing, i.e.,
SUs attempts to learn the environment and determine the
presence and characteristics of PUs. Spectrum sensing can
be done at SUs individually or cooperatively [5], [6], with
or without the assistance of infrastructure supports such as
dedicated monitor nodes and cognitive pilot channel (CPC)
[71, [8], [9], [10]. At individual nodes, energy detection is
commonly adopted to detect the presence of PUs, in which
the detector computes the energy of the received signal and
compares it to a certain threshold value to decide whether the
desired signal is present or not. Energy detection has the ad-
vantage of short detection time but suffers from low accuracy
compared to feature-based approaches such as cyclostationary
detection [3], [4]. From the prospective of a CR system, it
is often insufficient to detect PU activates in a single SU’s
vicinity (“is there any PU near me?”). Rather, it is important
to determine the identity of PUs (“who is there?”) as well as
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the distribution of PUs in the field (“where are they?”). We
shall call these issues the PU separation problem.

To motive the need for PU separation, let us consider the
following scenarios:

o Multiple SUs cooperatively infer the activities of PUs,
some of which may be observable to only a subset of
SUs. In this case, the SUs need to identify the PU-SU
adjacency relationships. Blindly assuming all PUs are
observable to all SUs would lead to inferior detection
results.

« Dedicated monitors are employed for spectrum sensing.
There exists redundancy in monitors’ observations due to
common PUs across multiple monitors. Such redundancy
can be reduced by judiciously selecting a subset of moni-
tors to report their spectrum sensing results. Furthermore,
some monitors can be put to low-power modes for energy
conservation.

Clearly, PU separation is a more challenging problem com-
pared to node-level PU detection. The conventional wisdom
would be that sophisticated methods such as feature-based
detection are necessary. On the contrary, we find that through
cooperation among monitors or SUs, not only the accuracy
of energy detection can be improved as been demonstrated
in several existing work, interestingly, PUs can be identified
using solely binary information (due to thresholding in energy
detection). The key to this somewhat surprising result is a
binary inference framework that models the observations of
SUs and monitors as boolean OR mixtures of underlying
binary latency sources for PUs. It allows us to exploit the
correlation structure among distributed binary observations.
We develop an iterative algorithm, called Boolean Independent
Component Analysis (bICA), to determine the underlying la-
tent sources (i.e., PUs) and their active probability. In bICA, no
prior information regarding the PUs’ activities or observation
noise is assumed. Given m monitors or SUs, up to 2™ — 1
PUs can be inferred resulting in great efficiency. This is
analogous to compressive sensing techniques [11], [12], where
sub-Nyquist sampling rates are sufficient for spatially sparse
data. Evaluation results show the effectiveness of bICA under
realistic settings.

The rest of the paper is organized as follows. In Section II,
the observation model is introduced. In Section III, we present



the bICA algorithm to determine the statistics of PU activities
and the inference algorithm to decide which set of PUs are
active. Evaluation results are detailed in Section IV followed
by conclusions and future work in Section VL.

II. MODEL AND PRELIMINARIES

Consider a slotted system where the transmission activities
of n PUs are modeled as a set of independent binary variables
y with active probabilities P(y). The binary observations
due to energy detection at the m monitor nodes (for the
remaining of the paper, we do not distinguish monitor nodes
and SUs) are modeled as an m-dimension binary vector with
joint distribution P(x). It is assumed that the presence of any
active PU in the surrounding of a monitor leads to positive
detection. An (unknown) binary mixing matrix G is used to
represent the relationship between the observable variables in
x and the latent binary variables in y = [y1,¥2,...,Yn] as

follows: N

zi=\ (gij Ayj), i=1,...
j=1

where A is Boolean AND and V Boolean OR, and g;; the

entry in the ¢th row and jth column of G. For the ease of
presentation, we introduce a short-hand notation as

x=Gay. 2

» 1, (1)

In essence, g;; encodes whether monitor 7 can detect the
transmissions of PU j. For a monitor i, the energy detection
returns 1 when one or more of the PUs that the monitor
can detect are active. G can be thought of as the adjacency
matrix of an undirected bi-partite graph G = (U, V| E), where
U= {x1,29,...,2m} and V = {y1,¥y2,...,yn} (Figure 1).
An edge e = (z;,y;) exists if g;; = 1.

Consider a matrix m x 1" matrix X, which is the collection
of T realizations of vector x. The goal of binary independent
component analysis (bICA) is to determine the latent inde-
pendent random variables y and the binary mixing matrix G
from X such that X can be decomposed into the mixing of
realizations of y. From G and y, we can identify the PUs
via the set of monitors, to which they are observable, and
additionally infer the active probability of PUs.

Note that the above model differs from blind deconvolution
with binary sources [13] in that in bICA, the mixing matrix
is binary, and the mixtures are generated from OR operations
instead of linear transforms over binary sources. Independent
component analysis (ICA) has been studied in the past as
a computational method for separating a multivariate signal
into additive subcomponents supposing the mutual statistical
independence of the non-Gaussian source signals. Most ICA
methods assume linear mixing of continuous signals [14].

III. BINARY INFERENCE FRAMEWORK

In this section, we first discuss the identifiability of binary
independent sources for PUs from OR mixtures observed
at the monitors, and then present an inference algorithm
that determines the unknown mixing matrix and underlying
sources.

Primary Users

Monitors

Fig. 1: Illustration of Monitors’ Observations of PU

A. Identifiability

For m-dimension binary random vector x, the number of
possible combinations of binary observations are 2™. From the
data matrix X, the distribution of x can be estimated in a non-
biased manner as the number of observations goes to infinity.
We can initialize n = 2™ — 1 and G matrix of dimension
m x 2™ — 1 with rows being all possible binary combinations
of length n (with the exception of all-O entries). This results in
a complete bipartite graph, where an edge exists between any
two vertices in U and V, respectively. For a random variable
y; € V, its neighbors in U is given by the non-zero entries
in g.; (i.e., the jth column of the G matrix). Thus, at most
2™ — 1 independent components can be identified.

Define p; £ P(y; = 1). Let the set

Y(x)={y |\ (g:; Ayy) =z, Vi}.
j=1

Therefore,

P(x) Ply € Y(X) = Xyevx) P),

g 4
= Yyevx) izt Pt (1 =)t

3)
where P(y) is the joint probability of y. The last equality is
due to the independence of y;’s.

Given the distribution of random vectors x € {0,1}™, 2™ —
1 independent equations can be obtained from (3) due to the
OR mixture model in (1). As there are 2™ — 1 unknowns (i.e.,
pi,% = 1,...,n), the probability of y; can be determined.
Clearly, ambiguity exists if two or more independent sources
have the same set of neighbors in U (or equivalently, identical
columns in G). In this case, binary information is insufficient
to distinguish these sources.

The set of equations in (3) are polynomials of sum product
forms, which are difficult to solve. This necessitates the design
of specialized algorithms. In the rest of the paper, we fix G to
be a m x 2™ — 1 adjacency matrix for the complete bipartite
graph. Furthermore, we order G such that g; = 1 if | <
k=1, for k =0,...,m — 1, where < is the bit shift to
the left. If the resulting p; = O for some [, this implies the
corresponding column g.; can be removed from G. Abusing
the notation slightly, we consider a binary random vector of a
set of independent sources and possibly some zero elements
a binary independent random vector.



B. The inference algorithm

Before proceeding to the details of the algorithm, we first
present a few technical lemmas.

Lemma 1: Consider a set x = [r1,2,...,2Tk_1, Tk gen-
erated by the data model in (1), i.e., 3 binary independent
sources y, s.t., X = G @& y. The conditional random vector

Xz=0 = [%1,Z2,...,Zk_1]xx = 0] corresponds to real-
izations of x when x; = 0. Then, x,,—0 = G’ @Yy,
where G’ = G. 961 and Py, = 1) = P(y, = 1) for
I=1,... 21,

Proof:

P(x1,x9,...Tk—1,2, = 0)
= P(J:l,xg,. .Zp—1|zr = 0)P(z = 0)

SN IR

yey(x
Vi1 € Y(xpp—1) ™70
y =0,V =1

gri=1

“4)
since Pz =0) = H (1 —p;), we have

gri=1

P(x1,22,...x5—1|zK = 0)

Yo IIwvia-pt

yIEY(Xlk 1)l 1

- > [1aa-m @
Yigre-1 € Y(Xl:kfl) 9kt =0
y=0,Vg =1

Clearly, by setting P(y; = 1) = Py = 1) for | =
1,.. .72’“_1, the above equality holds. In another word, the
conditional random vector X,,—o = G’ @y for G' =
G:,l:Qk—l. |

The above lemma establishes that the conditional random
vector x,,—o can be represented as an OR mixing of 2F~1
independent components. Furthermore, the set of the indepen-
dent components are the same as the first 2°~! independent
components of x (under proper ordering).

Consider a sub-matrix of the data matrix X, X(Uk_l)xT
where the rows correspond to observations of 1, zo, ..., Tr_1
for t = 1,2,...,T such that zy; = 0. Define X _1)x7,
which consists of the first £ — 1 rows of X. Suppose that
we have computed the BICA for data matrices X(k DxT
and X(j_1)x7. From Lemma 1, we know that X(k xT is
realization of OR mixing of independent components, denoted
by y?_,. Furthermore, P(y9)_,(l) = 1) = P(y, = 1) for
I = 1,...,2%71 Clearly, X(;_1)xr is realization of OR
mixing of independent components, denoted by y;_; (‘**’ for
do not care). Additionally, it is easy to see that the following
holds:

7)()’271(1) =1)
= 1-(1=Pyp_1() =)A= pryor-1)
1= (1= p)(1 = pryor-1),

H pra=p)t e [ A—p)

where | = 0,1,...,2% 1. Therefore,

p=Plyi () =1),0=1,...,
1-Ply;,1()=1)
1-Plyp_ (1) =1)
Define F(x) as the frequency of the random vector x from

the data matrix X. To this end, we have the following iterative
algorithm as illustrated in Algorithm 1.

k=1 and  (6)

I=1,....,2"Y (@)

Pryor—1 =1—

FindBICA()

input : Data matrix X,,x7r

init :n=2"-1;

pr=0,Vk=1,...,n;

Set G be a m x (2™ — 1) matrix with rows corresponding all
possible binary vector of length m.

if m = 1 then
‘ po = F(z1=0);
P11 = ]‘—(4151 =1)
else
pl0: 2™ — 1] = FindBICA(X(,,, 1) 1);

p'[0:2""" — 1] = FindBICA(X (1, 1) x7);
for [ =0,...2" 1 —1do

- 1-p]
L Pryom—-1 = 1-— T—p

Algorithm 1: Tterative bICA inference algorithm

Computation complexity: Let S(m) be the computation time
for finding BICA given X, 7. From Algorithm 1, we have,

S(m)=2S(m—1) + 2™,

where ¢ is a constant. It is easy to verify S(m) = c¢m2™.
Therefore, Algorithm 1 has an exponential computation com-
plexity with respect to m. This is clearly undesirable for large
m’s. However, we notice that in practice, correlations among
x;’s exhibit locality, and the G matrix tends to be sparse.
Instead of using a complete bipartite graph to represent G, the
degree of vertices in V' (or the number of non-zero elements
in g. 1) tend to be much less than m. More specifically, for
every pair ¢ and k, computer

Y XX 3 X Yo, Xi
T T T

If Cov(i,k) < e, where € is a small value (e.g., upper
confidence bound of Cou(i, k) estimate), we can remove the
corresponding columns in G and elements in y.

Cou(i k) =

IV. EVALUATION

In this section, we first introduce the performance metrics
and then present evaluation results on a synthetic data set with
varying number of PUs.

A. Performance metrics

Denote p and G the inferred PUs’ active probabilities and
the mixing matrix, respectively. Note that order of PUs in
the inferred model may be different from that in the original
model. To measure the closeness of the inferred model with the
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Fig. 2: An example scenario with 10 PUs and 10 monitors.

ground truth, we first select the top n (with highest probability)
components of the inferred model and remove the remaining
columns in G, where n is number of PUs. Then, we permutate
columns of G (corresponding to different PUs) such that a
good match between G and G can be found. Once the ordering
is decided, active probabilities are compared.

To evaluate performance of the proposed algorithm, we
introduce the following two metrics.

o Normalized Hamming Distance: This metric measures
accuracy of the inferred mixing matrix defined as the
Hamming distance between G and G divided by the size
of G.

A .

= o ey e |94 — 9il- ®)
Clearly, the smaller the H the better.

e Root Mean Square Error Ratio (RMSE Ratio): RMSE
Ratio measures the deviation of inferred PU activities
from original values.

]5 é \/W/Z%le (9)

B. Experimental results

10 monitors and n PUs are deployed in an 1000x1000
square meter area. with n varying from 5 to 20. Locations
of PUs are chosen arbitrarily with a restriction that no two
PUs can be observed by the same set of monitors. The PUs’
transmit power is 20mW, the noise level is -70dbm, and the
propagation loss factor is 3. The SNR threshold for monitors
to detect primary users is 5dB. Elements in the binary mixing
matrix G are either 1 or 0, depending whether or not received
signals are higher than the threshold. PUs’ activities are mod-
eled as a two-stage Markov chain with transition probabilities
uniformly distributed over [0, 1]. A monitor reports the channel
occupancy if any detectable PU is active. Number of monitors’
observations 7" is 5000.

One example scenario with 10 PUs is illustrated in Fig. 2
and the inferred result is available in Fig. 3. Non-zero entries
and zero entries of G and G are shown as black and white
dots, respectively. The entry-wise difference matrix |G — G |
is given in the bottom graph. In this case, only the first row
(corresponding to the first monitor) contains some errors.
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Fig. 3: G, @ and the difference matrix of the example scenario in
Fig. 2. Rows correspond to monitors and columns to PUs.

We have implemented our algorithm in Matlab. All exper-
iments are conducted on a desktop PC with an Intel Core 2
Duo T5750@2.00GHz processor and 2GB RAM. Experiment
results over 20 runs for each PU setting are shown in Fig. 4.
From Fig. 4(a), we observe that the inferred mixing matrix
G is mostly correct even for a large number of PUs. As
the number of PUs increases, errors in the inferred active
probabilities tend to increase though within 10% on average as
shown in Fig. 4(b). Recall that PUs are ordered based on their
respective columns in G. Therefore, errors in G may have
a cascading effect since we may compare the wrong pair of
PUs as a result. From Fig. 4(c), we see the computation time is
negligible (under 1 second). Due to space limit, experimental
results with varying numbers of samples are omitted. We
observe that having more samples beyond 5000 has marginal
impact on the accuracy of the inference.

V. RELATED WORK

Most ICA methods assume linear mixing of continuous
signals [14]. A special variant of ICA, called binary ICA,
considers boolean mixing (e.g., OR, XOR etc.) of binary
signals. Existing solutions to BICA mainly differ in their
assumptions of prior distribution of the mixing matrix, noise
model, and/or hidden causes. In [15], Yeredor considers BICA
in XOR mixtures and investigates the identifiability problem.
A deflation algorithm is proposed for source separation based
on entropy minimization. In [15] the number of independent
random sources K is assumed to be known. Furthermore, the
mixing matrix is an K-by-K invertible matrix. In [16], infinite
number of hidden causes following the same Bernoulli dis-
tribution are assumed. Reversible jump Markov chain Monte
Carlo and Gibbs sampler techniques are applied. In contrast,
in our model, the hidden causes may follow different distri-
bution and the mixing matrix tends to be sparse. Streith et
al. [17] study the problem of multi-assignment clustering for
boolean data, where the observations either draw from a signal
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following OR mixtures or from a noise component. The key
assumption made in this work is that elements of the matrix
X are conditionally independent given the model parameters.
This greatly reduces the computational complexity and makes
the scheme amenable to gradient descent optimization solution
this assumption is in general invalid. In [18], the problem of
factorization and de-noise of binary data due to independent
continuous sources is considered. The sources are assumed to
be following beta distribution. Finally, [16] consider under-
presented case of less sensors than sources with continuous
noise, while [18], [17] deals with over-determined case, where
number of sensors are much larger. In this work, we consider
primarily the under-presented cases encountered in data net-
works.

VI. CONCLUSION

In this paper, we propose a binary inference framework for
PU separation in cognitive radio networks. Simulation results
show the proposed algorithm can achieve less than 4% error
in the inferred mixing matrix and less than 10% error for the
active probability of PUs. PUs can thus be seperated based on
the set of monitors to which they are observable. As ongoing
work, we are investigating effect of noise on the inference
accuracy and aiming to develop a robust inference framework.
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